Analysis of Heterogeneous Multiscale Methods for Long Time Wave Propagation Problems

نویسندگان

  • Doghonay Arjmand
  • Olof Runborg
چکیده

In this paper, we analyze a multiscale method developed under the heterogeneous multiscale method (HMM) framework for numerical approximation of multiscale wave propagation problems in periodic media. In particular, we are interested in the long time O(ε−2) wave propagation, where ε represents the size of the microscopic variations in the media. In large time scales, the solutions of multiscale wave equations exhibit O(1) dispersive effects which are not observed in short time scales. A typical HMM has two main components: a macromodel and a micromodel. The macromodel is incomplete and lacks a set of local data. In the setting of multiscale PDEs, one has to solve for the full oscillatory problem over local microscopic domains of size η = O(ε) to upscale the parameter values which are missing in the macroscopic model. In this paper, we prove that if the microproblems are consistent with the macroscopic solutions, the HMM approximates the unknown parameter values in the macromodel up to any desired order of accuracy in terms of ε/η.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Methods for Wave Propagation in Heterogeneous Media Over Long Time

Multiscale wave propagation problems are computationally costly to solve by traditional techniques because the smallest scales must be represented over a domain determined by the largest scales of the problem. We have developed and analyzed new numerical methods for multiscale wave propagation in the framework of the heterogeneous multiscale method (HMM). The numerical methods couple simulation...

متن کامل

Analysis and Applications of Heterogeneous Multiscale Methods for Multiscale Partial Differential Equations

This thesis centers on the development and analysis of numerical multiscale methods for multiscale problems arising in steady heat conduction, heat transfer and wave propagation in heterogeneous media. In a multiscale problem several scales interact with each other to form a system which has variations over a wide range of scales. A direct numerical simulation of such problems requires resolvin...

متن کامل

Analysis and Applications of the Heterogeneous Multiscale Methods for Multiscale Elliptic and Hyperbolic Partial Differential Equations

This thesis concerns the applications and analysis of the Heterogeneous Multiscale methods (HMM) for Multiscale Elliptic and Hyperbolic Partial Differential Equations. We have gathered the main contributions in two papers. The first paper deals with the cell-boundary error which is present in multi-scale algorithms for elliptic homogenization problems. Typical multiscale methods have two essent...

متن کامل

کاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان

With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...

متن کامل

Estimates for the Upscaling Error in Heterogeneous Multiscale Methods for Wave Propagation Problems in Locally Periodic Media

This paper concerns the analysis of a multiscale method for wave propagation problems in microscopically nonhomogeneous media. A direct numerical approximation of such problems is prohibitively expensive as it requires resolving the microscopic variations over a much larger physical domain of interest. The heterogeneous multiscale method (HMM) is an efficient framework to approximate the soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2014